Homework 11
Due: Thursday, April 18, 2024 at 12:00pm (Noon)

Programming Assignment

Introduction

In the previous assignment, we implemented a feed forward neural network using stochastic gradient descent
consisting mainly of Numpy functions. In the assignment, we will instead be using Pytorch, a deep learning
library that is often used for building deep neural networks. Utilizing Pytorch, we can build neural networks
models more efficiently and conveniently compared to the previous assignment as you don’t need to imple-
ment the details of operators and backpropagation can be done automatically.

This assignment is to familiarize yourself with Pytorch and contains two parts. First, you will re-implement
HW10 with Pytorch, which contains a single layer neural network and a two-layer neural network that will
predict the quality of a wine (scored out of 10) given various attributes of the wine (for example, acidity,
alcohol content). You will compare the performance of both models on the UCI Wine Dataset, which you
previously used in HW2 and HW10. Second, you will build a convolutional neural network and train it on
the MNIST dataset. The book sections relevant to this assignment are 20.0, 20.1, 20.2, 20.3, 20.6.

Pytorch

For this assignment, we can use functions and classes provided by the Pytorch library to create our model
more conveniently. For example, torch.nn.Linear() is a function that applies a linear transformation to
the input data. This is equivalent to:

h(x) = (w,x) + b.

With this function, we eliminate the need to implement operator details, such as using transposing and
matmul functions in python. In addition, with the tools of Pytorch we are able to implement more complex
neural networks, such as a transformers network or simply adding an additional layer to our neural network.
A quick starter to pytorch can be found here.

Setup

e Preprocessing: Once again, you will be using the UCI Wine Dataset, which contains information about
various attributes of a wine and its corresponding quality rating (out of 10). However, in order to use
this data with Pytorch, we must first preprocess our data, i.e., retrieving, converting, and reformatting
the data into a form that can be used with Pytorch. For your convenience, we have provided you with
WineDataset and most of MNISTDataset. You only need to complete the __getitem__() function of
MNISTDataset.

e Building the model: To define a neural network in PyTorch, we create a class that inherits from
nn.Module. We define the layers of the network in the __init__() function and specify how data will
pass through the network in the forward() function, which will be called automatically when you pass
data into the model. torch.nn contains the layers we will need.

— Linear Layers: torch.nn.Linear defines a linear layer. A linear layer (or fully connected layer)
applies a linear transformation to the input data. With Pytorch, you don’t need to implement the
matrix multiplication by hand, and Pytorch takes care of it in a simple function call. Also, we
don’t need to calculate the gradients and write backpropagation by hand. Instead, we would want


https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

to use the out-of-the-box optimization algorithms provided by Pytorch, such as Adam, SGD, etc.
Refer to the Optimizing parameters section below. Besides, because the composition of multiple
linear layers is the same as applying one linear layer, we need some non-linear activation functions
between them to increase the expressiveness of our deep models.

— 2D Convolution Layers: torch.nn.Conv2d defines a 2D convolution layer. A 2D convolution
applies 2D filters to the input data (usually an image). The input data has shape [N, C, H, W],
where N is the batch size, C, H and W are the number of channels, height and width of feature
maps, respectively. You need to define properties of kernels by kernel_size, stride, and padding.
Here is a great post about the convolution operation.

— Activation Layers: Rather than implementing non-linear activation functions, such as ReLU
and Sigmoid activation functions, ourselves, we can utilize the activation functions provided by
the Pytorch library. Using these Pytorch functions, we can apply these activation functions to
our model’s data. This allows us to use and test with multiple complex activation functions more
easily that may improve the accuracy of our results.

e Optimizing parameters: To train deep models, we need loss functions and optimizers. In a single
training loop, the model makes predictions on a batch of the training dataset, and backpropagates the
prediction error to adjust the model’s parameters. Therefore, you need loss functions to calculate the
prediction error, and optimizers to backpropagate the error.

— Loss functions: In the torch.nn library, there are a variety of loss functions for different tasks.
In this assignment, you will use torch.nn.MSELoss to calculate the L2 loss for our wine quality
prediction task, and use torch.nn.CrossEntropyLoss to calculate the cross entropy loss for the
image classification task on MNIST. You may refer to the Examples section of CrossEntropylLoss
documentation to learn how to use loss functions and optimizer together. There are basically 4
steps: initialize a loss object, empty all previous gradients, calculate the loss for the current epoch,
and backpropagate the loss with the optimizer.

* More on cross entropy losses: If you look at the loss functions link above, you will notice

that there are 4 entropy-related losses: CrosskEntropylLoss, NLLLoss, BCELoss, and BCEWith-
LogitsLoss. So what are the differences and which should you choose for different tasks?
The BCELoss and BCEWithLogitsLoss are two forms of binary cross entropy and you may
use them in binary classification tasks. The major difference between them is that when
using BCELoss, your input values are expected to be probabilities, i.e., be the output of the
sigmoid activation. However, the input values of BCEWithLogitsLoss are logits (the sigmoid
activation will be called automatically within BCEWithLogitsLoss).
CrossEntropyLoss and NLLLoss are two losses that calculate the cross entropy loss for multi-
classification tasks. Similar to BCEWithLogitsLoss, the input values of CrossEntropyLoss are
expected to be logits. However, NLLLoss is a little tricky because it’s usually paired with
the torch.nn.LogSoftmax layer. For more details, you may refer to the Examples section of
NLLLoss documentation.

— Optimizers: torch.optim is a package that implements a variety of different optimization algo-
rithms that we have used previously, such as the stochastic gradient descent algorithm. To use an
optimizer, you want to initialize an optimizer instance, which holds the trainable parameters and
updates the parameters based on the computed gradients from the optimizing algorithm. For each
epoch, you would want to take an optimization step, which will update your parameters. Hint:
Pytorch implements this for you already with the step() function. Look here if you want more
information.


https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#loss-functions
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.html#loss-functions
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html?#torch.nn.MSELoss
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/nn.html#loss-functions
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html#torch.nn.BCELoss
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

e Suggested architecture and hyperparameters:

We recommend creating your own model at first. If you are struggling and cannot get desired results,
you can refer to our architecture.

— OneLayerNN

* Optimizer: SGD with learning rate 0.01.
* Batch size: 64
* Number of training epochs: 25
* Model:
- Simply a linear layer, no activation required.

— TwoLayerNN

* Optimizer: SGD with learning rate 0.01.
* Batch size: 64
* Number of training epochs: 25
* Model:
- Linear layer with hidden size of 32.
- Sigmoid activation.
- Another linear layer, no activation required.

— CNN

* Optimizer: SGD with learning rate 0.01.

* Batch size: 64

* Number of training epochs: 20

* Model:
- Conv2d layer, out_channels=16, kernel _size=3, stride=1.
- ReLU activation.
- Conv2d layer, out_channels=32, kernel size=3, stride=1.
- ReLU activation.
- Flatten layer.
- Linear layer, no activation required.

Training Neural Networks

The primary objective of training a neural network is to find a set of parameters that minimize the loss of
our network, which in this assignment, is L2 loss for wine and cross entropy loss for MNIST. Using Pytorch,
updating the parameters that minimize the loss is completed automatically.

Visualization

In utils.py we have provided several helper functions to visualize your models using matplotlib, a useful
Python library for plotting graphs. visualize loss() and visualize_accuracy() visualizes how your loss
and accuracy change per batch. These graphs will have the batch id on its x-axis and losses or accuracy
values on its y-axis. You should use this during your project report to compare the loss of different functions
and parameters. We also provide another visualize_image () function to visualize samples from the MNIST
dataset, annotated with groud truth labels and your predicted categories. visualize misclassified_image()
is a similar function but it only plots misclassified images. visualize_confusion matrix() plots the confu-
sion matrix of your CNN model. Hint: Uncomment the lines that call these functions.



Stencil Code & Data
UCI Wine

The data/wine.txt file contains 11 attributes of wine and its corresponding quality rating (out of 10) in the
first column.

8x8 Hand-Written Digits

In the data/digits.csv file, each row is an observation of a 8 x 8 hand-written digit (0 - 9), containing a
label in the first column and 8 x 8 = 64 features (pixel values) in the rest of columns.

Data Format

We have written almost all the preprocessing code for you. In Pytorch, a dataset class inherits
torch.utils.data.Dataset and overrides the __getitem__() method. You also need to initialize a
torch.utils.data.Dataloader instance for batching purposes. In this assignment, suppose
dataloader_train is an instance of the Dataloader class, you can get a batch of data by

for X, Y in dataloader_train:
# Your code

Here X and Y are Pytorch tensors. Similar to Numpy tensors, you can use X.shape to get the shape of
a tensor. X is a batch of features and Y is a batch of labels.

e For the wine dataset, X.shape is [N, 11] and Y.shape is [N, 1], where N is the batch size.

e For the MNIST dataset, X.shape is [N, 1,8, 8], where 1 means each image has 1 channel (because we
are using gray images), and the last two dimensions are height and width, respectively. Y.shape is [N].

Stencil Code

You can find and download the assignment here: HW11 on Github.

We have provided the following stencil code:

e main.py is the entry point of program which will read in the dataset, run the models, print and visualize
the results. You will tune hyperparameters, initialize optimizer and loss instances in this file.

e models.py contains OneLayerNN, TwoLayerNN, and CNN models which you will be implementing. You
also need to implement the functions for training, testing, and calculating the number of correct pre-
dictions.

e utils.py is responsible for creating datasets and dataloaders. You can also find visualization functions
here. In this file, you only need to complete the __getitem__() method of MNISTDataset.

We recommend implementing utils.py first. Then you can implement OneLayerNN, train(), test() in
models.py and test_linear nn() in main.py. For train() and test(), you don’t need to implement the
code within if correct_num func: blocks for now. After you have successfully trained OneLayerNN, you
can move on to TwoLayerNN. Finally you will implement CNN, correct_predict num(), and the remaining
part of train() and test() in models.py, as well as test_cnn() in main.py.

You should not need to modify any code to main.py outside of the TODOs. If you do for debugging
or other purposes, please make sure all of your additions are commented out in the final handin. All the
functions you need to fill in reside in models.py, mains.py, and utils.py, marked by TODOs. To run the


https://classroom.github.com/a/rJ3MQiWy

program, you need to uncomment test_xx() function calls in the main() function of main.py to train and
test the model. Then run python main.py in a terminal with the course environment set up.

As a hint, please uncomment both test_linear nn(nn_type=’one_layer’) and
test_linear nn(nn_type=’two_layer’) when testing TwoLayerNN on your machine. This is because we use
0 as the random seed, and if you only run test_linear nn(nn_type=’two_layer’), you will get different
initialized parameters and the shuffling of the training set will be different. Consequently, you may get a
higher loss. But as long as your implementation is correct, because the autograder runs TwoLayerNN after
OneLayerNN, your code will still pass the tests on the autograder.

If you're curious and would like to read about the datasets, you can find more information about the
Wine Dataset here, and for more information of MNIST dataset here but it is strongly recommended that
you use the versions that we’ve provided in the course directory to maintain consistent formatting.

Written Report
Guiding Questions

(a). Comment on your hyperparameter choices. These include the learning rate and the number of epochs
for training. (6 points)

(b). For the convolutional neural network, try different settings and discuss your findings. You may try
different optimizers, batch size, number of layers, kernel size, etc. (6 points)

(¢). Zhang et al. find that deep neural networks are powerful enough to easily fit random labels. Here is the
conference talk given by Zhang in ICLR2017. In this paper, the authors question the measure of deep
model complexity by only considering properties of the model itself. We have provided functions for you
to reimplement one experiment mentioned in the paper, which is fitting randomized training labels. We
will do this experiment with our CNN model and the MNIST dataset.

In test_cnn() of main.py, set shuffle train label = True. Because it takes longer for the model
to fit the random label, you also need to increase num_epoch. If you are using the recommended CNN
architecture, you can set num_epoch = 280.

Based on the training and testing accuracy, answer the following questions.

e What is the likely difference bettwen decision boundaries of datasets with shuffled training labels
and true training labels? Why do you expect this? (6 points)

e In the bias-complexity tradeoff lecture, we learned that when the model complexity increases,
the generalization ability tends to decrease. However, in this experiment with shuffled training
labels, the model structure remains the same, but we notice a huge divergence between model
performance on the training set and test set. Do you think the number of parameters is the only
metric for measuring a deep model’s complexity? If not, what other factors may contribute to
model complexity? Will the ‘complexity’ in the bias-complexity tradeoff theory change when the
dataset (or task) changes? Justify your answer. (6 points)


https://archive.ics.uci.edu/ml/datasets/wine
https://en.wikipedia.org/wiki/MNIST_database
https://arxiv.org/pdf/1611.03530.pdf
https://www.youtube.com/watch?v=kCj51pTQPKI

Grading
Loss and Accuracy Targets
We are expecting the following testing metrics for each of the models:
e OneLayerNN: Test loss < 0.70 on Wine. Otherwise, you may receive partial credits if loss < 0.80.
e TwoLayerNN: Test loss < 0.60 on Wine. Otherwise, you may receive partial credits if loss < 0.70.
e CNN: Test accuracy > 0.95 on MNIST. Otherwise, you may receive partial credits if accuracy > 0.85.
As always, we will be grading your code based on correctness and not based on whether or not you meet

these targets.

Hyperparameters

To verify the correctness of your implementation, check that your model satisfies the above training loss
benchmarks. Feel free to fine-tune the values of hyperparameters. We will use the hyperparameter values
that you choose when testing your model on the wine datasets and the MNIST datasets. And we strongly
suggest that you first verify the correctness of your implementation before modifying hyperparameters.

Breakdown
MNISTDataset | 10%
OneLayerNN 12%
TwoLayerNN 16%
CNN 38%
Report 24%
Total 100%

Handing in

You will hand in both the written assignment and the coding portion on gradescope, separately.

1. Submit your hwll github repo containing all your source code and your project report named re-
port.pdf on gradescope under “Homework 11 Code”. report.pdf should live in the root directory
of your code folder; the autograder will check for the existence of this file and inform you if it is not
found. For questions, please consult the download/submission guide.

If you have questions on how to set up or use Gradescope, ask on Edstem! For this assignment, you
should have written answers for Problems 1 and 2.

Obligatory Note on Academic Integrity

Plagiarism—don’t do it.

As outlined in the Brown Academic Code, attempting to pass off another’s work as your own can result
in failing the assignment, failing this course, or even dismissal or expulsion from Brown. More than that,
you will be missing out on the goal of your education, which is the cultivation of your own mind, thoughts,
and abilities. Please review this course’s collaboration policy and, if you have any questions, please contact
a member of the course staff.


https://docs.google.com/document/d/1ZzrmItaBju5r1O4p-2Lqohw3rcqsgOdmeWzbdkxHY0M/edit
https://college.brown.edu/design-your-education/academic-policies/academic-code

