CSCI 1420 NumPy Guide

Basic Matrix Operations

Function	Example	Notes
np.zeros(shape)	np.zeros((2, 2)) = $\begin{pmatrix} 0.0 & 0.0 \\ 0.0 & 0.0 \end{pmatrix}$	The default data type is float.
np.ones(shape)	$np.zeros((2, 2)) = \begin{pmatrix} 0.0 & 0.0 \\ 0.0 & 0.0 \end{pmatrix}$ $np.ones((2, 2)) = \begin{pmatrix} 1.0 & 1.0 \\ 1.0 & 1.0 \end{pmatrix}$	The default data type is float.
np.eye(n_rows)	$np.eye(2) = \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{pmatrix}$	Identity matrix. The default data type is float.
np.matmul(X, Y)	$\texttt{np.matmul(A, C)} = \begin{pmatrix} ai+bl & aj+bm & ak+bn \\ ci+dl & cj+dm & ck+dn \end{pmatrix}$	Matrix multiplication. X @ Y is equivalent to np.matmul(X, Y).
np.add(X, Y)	np.add(A, B) $= egin{pmatrix} a+e & b+f \ c+g & d+h \end{pmatrix}$	Element-wise addition. X + Y is equivalent to np.add(X, Y).
<pre>np.subtract(X, Y)</pre>	$ ext{np.subtract(A, B)} = egin{pmatrix} a-e & b-f \ c-g & d-h \end{pmatrix}$	Element-wise subtraction. X - Y is equivalent to np.subtract(X, Y).
np.multiply(X, Y)	np.multiply(A, B) = $\begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$	<pre>np.multiply(X, Y), or X * Y, is element-wise multi- plication. It is not the same as matrix multiplication (np.matmul(X, Y)).</pre>
np.divide(X, Y)	np.divide(A, B) $= egin{pmatrix} a/e & b/f \ c/g & d/h \end{pmatrix}$	Element-wise division. X / Y is equivalent to np.divide(X, Y).
np.transpose(X)	$\texttt{np.divide(A, B)} = \begin{pmatrix} a/e & b/f \\ c/g & d/h \end{pmatrix}$ $\texttt{np.transpose(C)} = \begin{pmatrix} i & l \\ j & m \\ k & n \end{pmatrix}$	X.T is equivalent to np.transpose(X).
np.mean(X)	np.mean(A) = $\frac{a+b+c+d}{4}$	Computes the arithmetic mean of the (flattened) input array. You can also specify an axis along which to compute a mean.
np.sum(X)	np.sum(A) = a + b + c + d	Computes the sum all of the values in the input array. You can also specify an axis along which to compute a sum.
np.reshape(X, shape)	np.reshape(A, (1, 4)) = $\begin{pmatrix} a & b & c & d \end{pmatrix}$	Reshapes array X into the specified shape, here transforming matrix A from a 2×2 to a 1×4 array. The total number of elements must remain constant.

Let $A = \begin{pmatrix} a & b \end{pmatrix}$ $B = \begin{pmatrix} e & f \end{pmatrix}$ $C = \begin{pmatrix} i & j & k \end{pmatrix}$

Indexing

Let
$$A = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{pmatrix}$$
.

Zero-Indexed Notation	NumPy Equivalent	Notes
$A_{2,2} = k$	A[2, 2] = k	Indexing one entry from a NumPy array returns a float.
$A_{1:3,1:3} = \begin{pmatrix} f & g \\ j & k \end{pmatrix}$	$ \begin{bmatrix} \texttt{A[1:3, 1:3]} = \begin{pmatrix} f & g \\ j & k \end{pmatrix} $	NumPy indexing is very similar to Python list indexing.
$A_{1:4,0:2} = \begin{pmatrix} e & f \\ i & j \end{pmatrix}$	A[1:, :2] = $\begin{pmatrix} e & f \\ i & j \end{pmatrix}$	Indexing with :i returns all values up to but not including the value at index i in that dimension. Indexing with i: returns all values starting from and including the value at index i up to the last value in that dimension.
$A_{0:2,1} = \begin{pmatrix} b \\ f \end{pmatrix}$	$A[:2, 1] = \begin{pmatrix} b & f \end{pmatrix}$	Indexing a column from a NumPy ar- ray returns a 1-dimensional NumPy ar- ray. Reshape the output with, for example, A[:2, 1].reshape(-1, 1) if you specifi- cally need a column vector.
$A_{1,0:2} = \begin{pmatrix} e & f \end{pmatrix}$	$A[1, :2] = \begin{pmatrix} e & f \end{pmatrix}$	Indexing a row from a NumPy array re- turns a 1-dimensional NumPy array.

Linear Algebra

Let
$$A = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{pmatrix}$$
, $B = \begin{pmatrix} m & n \\ o & p \end{pmatrix}$

Function	Example	Notes
np.linalg.norm(X)	np.linalg.norm(A[:,1]) = $\sqrt{b^2 + f^2 + j^2}$	By default, computes the L2 norm (Euclidean distance) of the input vector. If the in- put is a matrix, the default behaviour is to compute the Frobenius norm.
np.linalg.inv(X)	np.linalg.inv(B) = $B^{-1} = \frac{1}{mp-no} \begin{pmatrix} p & -n \\ -o & m \end{pmatrix}$	Computes the inverse of square matrix X. Raises an error if inversion fails.
np.dot(X, Y)	np.dot(A[0], A[1]) = $\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix}$	Computes the inner (i.e dot) product of two arrays. For 2-dimenstional arrays, np.dot(X, Y) is equivalent to X @ Y. For computing general inner products, see np.inner(X,Y).