CSCI 1420 NumPy Guide

Basic Matrix Operations

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), B=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right), C=\left(\begin{array}{ccc}i & j & k \\ l & m & n\end{array}\right)$		
Function	Example	Notes
np.zeros (shape)	$\mathrm{np} \cdot \operatorname{zeros}((2,2))=\left(\begin{array}{ll}0.0 & 0.0 \\ 0.0 & 0.0\end{array}\right)$	The default data type is float.
np.ones (shape)	$\mathrm{np} . \operatorname{ones}((2,2))=\left(\begin{array}{ll}1.0 & 1.0 \\ 1.0 & 1.0\end{array}\right)$	The default data type is float.
np.eye(n_rows)	np.eye (2) $=\left(\begin{array}{ll}1.0 & 0.0 \\ 0.0 & 1.0\end{array}\right)$	Identity matrix. The default data type is float.
np.matmul (X, Y)	np.matmul (A, C) $=\left(\begin{array}{lll}a i+b l & a j+b m & a k+b n \\ c i+d l & c j+d m & c k+d n\end{array}\right)$	Matrix multiplication. X @ Y is equivalent to np.matmul(X, Y).
np.add (X, Y)	$\mathrm{np} \cdot \operatorname{add}(\mathrm{A}, \mathrm{B})=\left(\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right)$	Element-wise addition. $\mathrm{X}+\mathrm{Y}$ is equivalent to np.add (X, Y).
np.subtract (X, Y)	np. subtract (A, B) $=\left(\begin{array}{ll}a-e & b-f \\ c-g & d-h\end{array}\right)$	Element-wise subtraction. X - Y is equivalent to np. subtract (X, Y).
np.multiply (X, Y)	np.multiply (A, B) $=\left(\begin{array}{ll}a e & b f \\ c g & d h\end{array}\right)$	np.multiply(X, Y), or $\mathrm{X} * \mathrm{Y}$, is element-wise multiplication. It is not the same as matrix multiplication (np.matmul(X, Y)).
np.divide(X, Y)	np.divide (A, B) $=\left(\begin{array}{ll}a / e & b / f \\ c / g & d / h\end{array}\right)$	Element-wise division. X / Y is equivalent to np. divide(X, Y).
np.transpose (X)	np.transpose $(\mathrm{C})=\left(\begin{array}{cc}i & l \\ j & m \\ k & n\end{array}\right)$	X.T is equivalent to np.transpose(X).
np.mean (X)	$\operatorname{np} . \operatorname{mean}(\mathrm{A})=\frac{a+b+c+d}{4}$	Computes the arithmetic mean of the (flattened) input array. You can also specify an axis along which to compute a mean.
np.sum (X)	$\operatorname{np} \cdot \operatorname{sum}(\mathrm{A})=a+b+c+d$	Computes the sum all of the values in the input array. You can also specify an axis along which to compute a sum.
np.reshape (X, shape)	np.reshape (A, (1, 4)) = ($\left.\begin{array}{llll}a & b & c & d\end{array}\right)$	Reshapes array X into the specified shape, here transforming matrix A from a 2×2 to a 1×4 array. The total number of elements must remain constant.

Indexing

$$
\text { Let } A=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l
\end{array}\right)
$$

Zero-Indexed Notation	NumPy Equivalent	Notes
$A_{2,2}=k$	$\mathrm{A}[2,2]=k$	Indexing one entry from a NumPy array returns a float.
$A_{1: 3,1: 3}=\left(\begin{array}{ll}f & g \\ j & k\end{array}\right)$	$\mathrm{A}[1: 3,1: 3]=\left(\begin{array}{ll}f & g \\ j & k\end{array}\right)$	NumPy indexing is very similar to Python list indexing.
$A_{1: 4,0: 2}=\left(\begin{array}{cc}e & f \\ i & j\end{array}\right)$	$\mathrm{A}[1:,: 2]=\left(\begin{array}{ll}e & f \\ i & j\end{array}\right)$	Indexing with :i returns all values up to but not including the value at index i in that dimension. Indexing with i: returns all values starting from and including the value at index i up to the last value in that dimension.
$A_{0: 2,1}=\binom{b}{f}$	$\mathrm{A}[: 2,1]=\left(\begin{array}{ll}b & f\end{array}\right)$	Indexing a column from a NumPy array returns a 1-dimensional NumPy array. Reshape the output with, for example, A[:2, 1].reshape ($-1,1$) if you specifically need a column vector.
$A_{1,0: 2}=\left(\begin{array}{ll}e & f\end{array}\right)$	$\mathrm{A}[1, \quad 2]=\left(\begin{array}{ll}e & f\end{array}\right)$	Indexing a row from a NumPy array returns a 1-dimensional NumPy array.

Linear Algebra

$$
\text { Let } A=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l
\end{array}\right), B=\left(\begin{array}{ll}
m & n \\
o & p
\end{array}\right)
$$

Function	Example	Notes
np.linalg.norm(X)	np.linalg.norm $(\mathrm{A}[:, 1])=\sqrt{b^{2}+f^{2}+j^{2}}$	By default, computes the L2 norm (Euclidean distance) of the input vector. If the input is a matrix, the default behaviour is to compute the Frobenius norm.
np.linalg.inv(X)	np.linalg.inv(B) $=B^{-1}=\frac{1}{m p-n o}\left(\begin{array}{cc}p & -n \\ -o & m\end{array}\right)$	Computes the inverse of square matrix X. Raises an error if inversion fails.
$n \mathrm{n} . \operatorname{dot}(\mathrm{X}, \mathrm{Y})$	$\operatorname{np} \cdot \operatorname{dot}(\mathrm{A}[0], \mathrm{A}[1])=\left(\begin{array}{ll}a & b\end{array}\right)\binom{c}{d}$	Computes the inner (i.e dot) product of two arrays. For 2-dimenstional arrays, $\operatorname{np} \cdot \operatorname{dot}(\mathrm{X}, \mathrm{Y})$ is equivalent to X @ Y . For computing general inner products, see np.inner (X, Y).

